Inherent Reflectance Variability of Vegetation

Agriculture 2019, 9(11), 246

Abstract: With the inception of small unmanned aircraft systems (sUAS), remotely sensed images have been captured much closer to the ground, which has meant better resolution and smaller ground sample distances (GSDs). This has provided the precision agriculture community with the ability to analyze individual plants, and in certain cases, individual leaves on those plants. This has also allowed for a dramatic increase in data acquisition for agricultural analysis. Because satellite and manned aircraft remote sensing data collections had larger GSDs, self-shadowing was not seen as an issue for agricultural remote sensing. However, sUAS are able to image these shadows which can cause issues in data analysis. This paper investigates the inherent reflectance variability of vegetation by analyzing six Coneflower plants, as a surrogate for other cash crops, across different variables. These plants were measured under different forecasts (cloudy and sunny), at different times (08:00 a.m., 09:00 a.m., 10:00 a.m., 11:00 a.m. and 12:00 p.m.), and at different GSDs (2, 4 and 8 cm) using a field portable spectroradiometer (ASD Field Spec). In addition, a leafclip spectrometer was utilized to measure individual leaves on each plant in a controlled lab environment. These spectra were analyzed to determine if there was any significant difference in the health of the various plants measured. Finally, a MicaSense RedEdge-3 multispectral camera was utilized to capture images of the plants every hour to analyze the variability produced by a sensor designed for agricultural remote sensing. The RedEdge-3 was held stationary at 1.5 m above the plants while collecting all images, which produced a GSD of 0.1 cm/pixel. To produce 2, 4, and 8 cm GSD, the MicaSense RedEdge-3 would need to be at an altitude of 30.5 m, 61 m and 122 m respectively. This study did not take background effects into consideration for either the ASD or MicaSense. Results showed that GSD produced a statistically significant difference (p < 0.001) in Normalized Difference Vegetation Index (NDVI, a commonly used metric to determine vegetation health), R 2 values demonstrated a low correlation between time of day and NDVI, and a one-way ANOVA test showed no statistically significant difference in the NDVI computed from the leafclip probe (p-value of 0.018). Ultimately, it was determined that the best condition for measuring vegetation reflectance was on cloudy days near noon. Sunny days produced self-shadowing on the plants which increased the variability of the measured reflectance values (higher standard deviations in all five RedEdge-3 channels), and the shadowing of the plants decreased as time approached noon. This high reflectance variability in the coneflower plants made it difficult to accurately measure the NDVI.

Read the paper

Authors: Mamaghani, Baabak & Saunders, M. & Salvaggio, Carl.

Associations: Chester F. Carlson Center for Imaging Science, Digital Imaging and Remote Sensing Laboratory, Rochester Institute of Technology

Get updates and learn from the best

Want to Explore More?

Search Content
Filter by category
Select all
Agriculture
Environmental Monitoring
Forestry
Phenotyping
Other
Generic filters